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ABSTRACT: Inhomogeneous polyelectrolyte materials have been of
both longstanding and recent interest; polymer blends exhibit
technologically advantageous properties for adhesives and fuel cell
membranes and serve as an ideal model system to study more
complicated behaviors in polyelectrolyte materials. However, the physics
governing the phase behavior of polyelectrolyte blends remains poorly
understood. Traditional self-consistent field theory (SCFT) can include
Coulombic interactions that arise in polyelectrolytes but can only
reproduce Poisson−Boltzmann behavior or perturbations thereof due to the mean-field nature of the SCFT calculation. Recently,
tools have been developed to couple SCFT with liquid state (LS) integral equation theory, which can calculate ion correlations in
a quantitative fashion. This permits the articulation of ion effects in very low dielectric εr constant regimes that are relevant to
polymer blends in nonaqueous conditions. We show that the inclusion of local ion correlations can give rise to marked
enhancement of phase separation, contrary to theories invoking the Poisson−Boltzmann approximation, even to the extent of
driving phase separation when two polymers are fully miscible (χN = 0). We provide both a demonstration of this effect as well as
a conceptual explanation.

Blends involving at least one polyelectrolyte species are of
great technological interest, as they provide a facile way to

combine the advantageous properties of two polymers in a
single material. A wide range of physical systems have been
realized experimentally; in the solution phase, for example, pairs
of oppositely charged polyelectrolytes drive highly controlled
layer by layer systems for structured membranes,1 and complex
coacervate systems have been investigated as biomimetic
adhesives.2 Blends are also important in the melt phase. A
class of polyelectrolytes that have low charge fractions, known
as “ionomers,” have been studied extensively in both single-
component3,4 and blend systems5−7 due to their promise as fuel
cell membranes due to the relative success of the commercial
ionomer Nafion5,8 as well as their ability to enhance the
mechanical and barrier properties of the nonionomer blend
component.7 Experimental and simulation studies have
demonstrated that local structural information is important in
the phase behavior of such materials.3,4,6 While blending with
specific complementary moieties will result in enhanced
miscibility,7 immiscibility is usually enhanced by the presence
of backbone charges in ways that are counterion-dependent.5,6

Polymer blends also serve as an important model system for the
understanding of the thermodynamics of more complex
systems, with blend literature9 providing the language to
articulate related fields such as block copolyelectrolytes10 that
are widely considered for applications in stimuli-responsive
materials and battery membranes.11,12 Despite their relevance,
there is very little theoretical research into the phase behavior
of melt polyelectrolyte blends, with existing work focused on
using phase behaviors of blends as a model system for block
copolymer systems.13,14

Historically, self-consistent field theory (SCFT) studies on
polyelectrolytes have utilized the Poisson−Boltzmann (PB)

approximation,10,15,16 despite the well-known result that such
methods are severely limited in terms of the strength of the ion
coupling.16 In fact, even elaborate perturbation methods yield
results that are only applicable to monovalent ions in an
aqueous environment, which is far weaker than the charge
coupling between ions in the blend-relevant case of ions in the
extremely low dielectric environment of polymer melts or
blends.16 Building off work in two-phase gel systems,17 we have
recently developed a self-consistent thermodynamic model
capable of describing the behavior of polyelectrolyte systems
that incorporates the liquid state (LS) integral equation theory
into standard SCFT methods such that inhomogenous
polyelectrolyte systems are described in a fashion that considers
the effect of charge correlations.18 Thus, local structure that is
known to be important in experiments can be theoretically
articulated.3,18 LS theory provides a thorough description of
correlations by comparing an infinite number of terms in Mayer
cluster expansions.19 This comparison is approximate, as many
clusters are neglected in making this comparison (primarily
“bridge diagram” contributions);19 however, even in highly
coupled electrolytes comparison to simulation is quantitative in
most regimes of interest.20

We use this theoretical tool to investigate the phase
behaviors of polyelectrolyte blends and demonstrate that
correlation effects can be incredibly important; existing theories
on related block copolymer systems neglect these effects and
observe a suppressed phase separation,21−23 while we predict
that the inclusion of correlations will demonstrate the opposite
behavior in a blend of polyelectrolytes. Our results are in line
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with experimental observations, which typically observed
charge-induced enhancement of phase separation in both
blends and block copolymers.5,6,24 Realizing conditions
appropriate for polymer melts (relative dielectric constants εr
∼ 5−10 and ion sizes a = 2.5 Å), it is even possible to observe
phase separation in blends that are otherwise completely
miscible (χN = 0).
We consider a blend of two polymers of length N, an A

polymer that has a fraction fq of charged monomers, and a B
polymer that is uncharged. There are short-ranged repulsions
between the monomers of A and B that are represented by the
classical Flory−Huggins χ-parameter. We consider these
polymers to be the sole components in a SCFT calculation,
using a coordinate grid x that is discretized by units Δx ∼ 10−
100 nm. This is governed by the well-known free energy
functional SCFT:
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where n is the number of polymers in the system; ρ0 = nN/V is
the monomer density; and ω− and ω+ are the conjugate fields
that are solved for self-consistently for the equilibrium values
ω±* such that δ δω ω+ *+( / )SCFT = 0 and δ δω ω− *−( / ) = 0.15 In
this model, ωA/B = ∓ω− − iω+ + fqδA(ln(ρ+) + 2μCORR) are the
fields (the subscript A/B denotes that there are two equations
for A and B that have the same form but different signs ∓) that
are included in the single-chain partition functional Q =
∫ dxq(x,s = N), which is calculated upon solving the diffusion
equation ∂qA/B(x,s)/∂s = [b2/6▽2 − ωA/B]q(x,s) where b is the
monomer length and q is the single chain propagator.15 The
contribution fqδA(ln(ρ+) + 2μCORR) is the field due to the
presence of the charged monomers (the δA denotes that this
only applies for the charged species); it describes their
interactions with each other as well as the surrounding
counterions (that have concentration ρ+).

18

Within each SCFT grid point, Δx, we consider the local
structure to be a homogeneous, electroneutral liquid of
counterions of radius a with density ρ+ and charged monomers
ρ− = ρ0ϕA fq = ρ+ = ρ±.

25 We will only consider monovalent
ions z = 1.0. The organization of these charges is dictated by
the Coulombic interactions and the hard-sphere repulsions of
these components (since we focus on low fq we for now assume
that we can neglect charge connectivity on this local level). This
organization is characterized by the pair correlation function
g(r) = h(r) + 1, which can be calculated directly using LS
theory.19,20 In LS theory, only the densities ρ± and the pairwise
potential u between two entities are necessary to determine
g(r).19 In our situation, the pair potential between charged
species i and j is given by uij = kBTzizjλB/r + uHCΘ(2a − r),
where uHC →∞ is the hard core potential whose range is set by
the Heaviside function Θ(2a − r) and λB = e2/(4πεkBT) is the
Bjerrum length (e is the electron charge, and ε is the dielectric
constant). uij and ρ± are placed into two equations: the
Ornstern−Zernike equation ĥij = cîj + ρ±cîkĥkj (hats denote
Fourier transformed values, indices denote different charged
species i, j, k = {+, −}) and a closure relation that
independently links cij and hij.

19 hij = gij − 1.0 is the total
correlation function (related to the pair correlation function gij)
between i and j, while cij is the direct correlation function.19 We

note that both of these functions are typically radially
symmetric for spherical ions, with a coordinate r that is on a
much smaller length scale than x. In this work we use the
Debye−Huckel extended mean sperical approximation
(DHEMSA) closure relationship, which is described in
Zwanikken et al.20 It is essentially identical in most situations
to the well-known hypernetted chain (HNC) closure, and both
are known to reproduce simulation data nearly quantitatively.20

Also, using HNC we can calculate the correlation-based
chemical potential of a given ion μCORR,i that is not associated
with the ideal gas chemical potential μIG = ln(ρ±)
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While this is strictly relevant only for the HNC closure,19

DHEMSA is known to be nearly identical, and we will use this
expression.20 It is this chemical potential that is included in the
single chain partition functional calculation in eq 1. The
iterative technique we use is described in more detail in Sing et
al.;18 however, the concept of the approach is that we calculate
μCORR at every grid point x based on the density ρ± at each
location. This density is based on the density of A and B
calculated from Q*[ω±*, μCORR]
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This in turn is dependent on the correlation chemical potential
μCORR of the charged species. This dependency is iteratively
carried out until μCORR and ρA/B are self-consistent. Figure 1
schematically describes our scheme and the coupling between
the large polymer-length scales x and the small charge-
correlation length scales r.
The new parameter in this method is the introduction of the

correlation chemical potential μCORR as the bridge between the
coarse-grained representation of the inhomogenous polymer

Figure 1. (a) Schematic demonstrating the system of interest, with
two length scales. A large length-scale grid (bottom square) is
considered with a 1-dimensional coordinate x that is divided into
regions of size Δx. The behavior of polymers on this length scale is
determined by SCFT, which can demonstrate the creation of phase-
separated A- and B-rich regimes. Each of these grid regions is
demonstrated on a smaller length scale by a homogeneous fluid of
charges (magnified circle) with one of the species being the
counterions and the other species being the backbone charges. Within
the area Δx, distances are given by the coordinate r along which
correlations are calculated using LS theory. (b) Charged polyelec-
trolyte chains A and neutral polymer chains B are considered in this
work. A and B chains of length N have short-range interactions given
by χ and A containing a fraction of charged monomers fq.
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system described by the SCFT calculation and the molecular-
level correlation data described by LS theory.17,18 This chemical
potential will not be constant in space, as it depends on the
local concentration of the charged species ρ±. In an A
homopolymer phase, we can plot this chemical potential
contribution as a function of the fraction of charge fq. This
represents the energy associated with a single ion in a
homogeneous fluid of ions with a fraction that is related to
the charge density ρ± = fqρ0 and can be plotted for a number of
different values of the normalized Bjerrum length Γ = λB/(2a).
In an aqueous environment, Γ ≈ 1, and thus the distance over
which the Coulombic interaction is greater than thermal energy
is approximately the distance between ions, which permits the
use of Poisson−Boltzmann in these situations. This is much
weaker than the case of a melt of polymer, which may have
extremely low relative dielectric constants εr ≈ 5−20
(compared to water εr = 80.1). For this work, we consider
both A and B to have equivalent εr to separate this effect from
self-energy effects described by Wang.13 This is well-motivated,
since except for a few outliers such as PEO (εr = 7.5)13 most
technologically relevant polymers have nearly identical εr ∼
2.5−4 and situations where self-energy effects are small are
likely.26 Even in situations where self-energy effects are
pronounced, this effect remains significant. We therefore
consider values of Γ ≈ 4.5−22.5, corresponding to highly
coupled charges. The weakest Coulombic interaction Γ ≈ 4 is
similar in strength to divalent ions in an aqueous environment,
which are already known to be poorly described by
perturbation theories.16 We plot μCORR for a number of values
Γ in Figure 2, which is for a homogeneous, charged (A)
polymer of charge fraction fq (or an effective charge fraction fq
→ fqϕA for a mixture). The qualitative behavior of this plot
reveals the role of ion correlations in highly interacting polymer
systems. In the limit of low charge fraction fq → 0 a single ion
tends to the limit μCORR → 0. This is the limiting case of ideal

gas behavior at low concentrations, which is expected for any
system at sufficient dilution. As fq increases, μCORR becomes
significantly less than 0 (μCORR ≪ 0, |μCORR| ≫ 1kBT) such that
at intermediate ion concentrations the tendency of oppositely
charged ions to attract lowers the energy of the system with
increasing concentrations of ions. This also informs our use of
the Γ parameter, as we plot Γ = 13.9 for a = 2.5 and 2.0 Å (εr =
10.0 and 8.0, respectively), and both have the same minimum
in μ̃CORR. While this effect is strong, at some point the excluded
volume of the ions becomes significant. At large charge
fractions fq > 0.1−0.2, μCORR begins to increase significantly.
This is due to the entropic penalty paid by the presence of large
ions, as they exclude volume that lowers the amount of
configurational entropy in the dense charged system.18 The
significance of this behavior is that at intermediate fq the
charged polymer is highly attracted to itself; however, this is
suppressed at high values of fq due to excluded volume.
These thermodynamic behaviors are relevant to the phase

behavior of polyelectrolyte blends, where one of the polymers is
charged and the other is not ( fq > 0). We can calculate the
phase behavior using SCFT, which we indicate in Figure 3 for a

number of situations (N = 40 for all results). In Figure 3, we
plot the phase behavior for an uncharged symmetric system
(black) which corresponds to the well-known Flory−Huggins
mean-field result (χNcritical = 2.0). For all plots, the phase-
separated region is above the binodal lines. If charges are
included such that only the ideal-gas behavior is considered
(μCORR = 0), the red curve is obtained; this demonstrates
significant suppression of the phase separation to large values of
χN > 5−6, an effect that occurs more significantly on the left
side of the diagram. This is due to the decrease in ion entropy
concomitant with phase separation since it is entropically
favorable for the system to be in a mixed state where the
counterions are free to sample configurations spanning the
entire sample. This is in qualitative agreement with literature
observations in the related block copolymer theoretical

Figure 2. Chemical potential μ̃CORR for the charged species in a
polyelectrolyte melt as a function of the fraction of charged monomers
fq (monovalent, with an equal number of monovalent counterions). A
number of values of correlation strength Γ = λB/(2a) are shown,
representing a variety of values of the relative dielectric constant εr and
ion radius a. Three ion radii are represented: a = 2.0 Å (black/gray), a
= 2.5 Å (blue/green), and a = 3.0 Å (red/pink). These values are
calculated using the DHEMSA closure, which becomes unstable at
densities below the indicated points (crosses). Linear extrapolation
from these points to the limit of μCORR → 0 as fq → 0 follows; we do
not expect this approximation to have profound effects on the results
of this article. Chemical potentials can be as large as 6 − 7kBT for the
largest value of Γ shown. All values of Γ are realistic for ions in
polymer melts.

Figure 3. Phase diagram on the χN−ϕA plane from a number of
charge-neutral polymer blends. The mean-field Flory−Huggins result
for a symmetric blend (black) has a theoretically predicted χcriticalN =
2.0. Above this binodal, there is a coexistence regime where phase
separation occurs. The inclusion of only the ideal gas contribution of
the counterions (μCORR = 0) results in the red curve, which
demonstrates strongly suppressed phase separation such that χcriticalN
≈ 5−6. Inclusion of correlations with a strength denoted by Γ
enhances phase separation at large Γ in contrast to the ideal gas result.
At large values of Γ ≥ 17 phase separation is observed even at χN = 0
indicating that charge correlations alone can drive phase separation. fq
= 0.1 and N = 40, a = 3.0 Å for Γ = 4.6, 11.6, a = 2.5 Å for Γ = 17.1,
22.2, and a = 2.0 Å for Γ = 27.8.
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literature, which does not include correlations.15,21−23 The
inclusion of weak correlations (Γ = 4.6) changes this diagram
very little; however, further increase in the strength of the
correlation results in a significant increase in phase separation.
At Γ = 17.1, which corresponds to ions of size a = 2.5 Å in a
dielectric constant of εr = 6.5, phase separation at values of ϕA
occurs even at χN = 0. This effect only increases upon
increasing Γ. We therefore predict that phase separation can be
induced solely by the charge correlations even in the absence of
short-range (i.e., dispersive, χ-induced) immiscibility.
The behaviors described in the phase diagrams are

conceptually understandable based on consideration of
corrections to Flory−Huggins mean field theory. Without
charges, a symmetric polymer blend has the Flory−Huggins
free energy FH

ϕ
ϕ ϕ ϕ ϕ
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= + − −

+ −
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With charges, the free energy will include corrections due to
ideal gas confinement to the A-rich phase Δ IG( fq,ϕA) ≈

IG(ϕA ≈ 1) − IG(ϕA) and due to correlation enhancement
upon confinement to the A-rich phase Δ CORR ( fq,ϕA) ≈

CORR(ϕA ≈ 1) − CORR(ϕA), such that the actual free energy
is given by = + Δ + ΔTOT FH IG CORR . For the ideal gas
term, the counterion entropy is given by ϕ f( , )A qIG = fqϕA

ln(ϕA fq), so ϕΔ f( , )A qIG ≈ −fqϕA ln ϕA > 0, which increases

the free energy. This increase happens primarily at low values of
ϕA, as is demonstrated schematically in Figure 4a. This increase
results in a concomitant shift in the phase boundary such that
the phase separation regime is suppressed. The correlation term
is given by CORR ≈ 2fqϕAμCORR(ϕA fq). We emphasize that this
term is highly nonlinear (hence the functional dependence of
μCORR on ϕA; however, as demonstrated in Figure 2 μCORR < 0
for most values of ϕA. For the situations in Figure 3,

ϕΔ f( , )q ACORR < 0 since in general μCORR(ϕA = 1) <

μCORR(ϕA < 1). The magnitude of this effect is on the order of
as much as 10kBT, demonstrated in Figure 2, with the direction
of this effect schematically illustrated in Figure 4b. This will
drastically enhance phase separation, especially at low values of
ϕA where the difference between μCORR(ϕA = 1) and
μCORR(ϕA) is large. The cumulative effect of Δ IG and
Δ CORR is illustrated in the schematic phase diagram in Figure
4c that demonstrates the effects shown in Figures 4a and b.

This behavior can be conceptually understood as a competition
between the Coulombic cohesion, which represents the
tendency of local ion structures to order, and counterion/
chain entropy. At χN = 0, the translational entropy of both the
chains (which is small) and the counterions (which is the
primary contribution) tends to drive the system toward mixing
such that all components sample the entire system volume.
However, there is a strong dependence of the free energy on
charge density such that the chain charges and counterions will
tend to aggregate due to Coulombic attractions that arise due
to correlations. This competition drives phase separation even
in the absence of χ due to the net attractive nature of the
Coulombic interactions but only if these are strongly coupled
(large Γ).
In conclusion, we have shown that upon inclusion of ion

correlation effects in the SCFT calculation of polyelectrolyte
blends where the Bjerrum length is large (λB/(2a) = 4−25)
these correlation effects can have a profound effect on the
phase behavior of the system. We have intentionally left out
effects such as dielectric self-energy effects, which are known to
have pronounced effects on polyelectrolyte blends, to
emphasize the magnitude of this particular effect; a full
description of a material may need to include such physics.13

Even in the absence of this effect, at short-range repulsion χN =
0 there is a possibility for strong correlation-induced phase
separation due to the Coulombic cohesion among the polymer-
based charges and their counterions. We have presented these
effects in the context of polyelectrolyte blends, which are widely
used in the study of ionomer systems.5 These calculations and
results also have profound implications for other inhomoge-
neous polyelectrolyte systems as well, such as block copolymers
that are candidate materials for battery membranes.12,13,27

Likewise, stimuli-responsive systems are currently of great
interest.11 The electrostatic effects presented here provide a
route to tune material properties; however, such design requires
an understanding of the thermodynamics of charge correlations.
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